Google

Plasma

الخميس، 24 أبريل 2008

ألبلازما والتكنولوجيا الحديثة

البلازما..الليزر..هي مصطلحات القرن الجديدة ..هي مستقبل العلوم التي قد تكون في يوم قريب الطريق الأوحد للتقدم..وستتنافس الأمم على تلك العلوم .أقصد الدول التي انشغلت فقط بالأمن الغذائي والسياسات الداخلية , والعجز عن وضع قاعدة تشيد المستقبل على خطة بعيدة الأمد ...لا أريد قول هذا المصطلح الذي صنفنا من خلاله بناءا على الرجعية والاستهلاكية التي نعيش بها..مصطلح الدول النامية ..أو دول العالم الثالث..ولن أطيل بسرد قصص نجاح أمم مثل دولة الهند التي أصبحت من أشد المنافسين العالميين في مجال التكنولوجيا الحديثة والتقدم العلمي بفروعه.بالرغم أنه تعتبر الآن دولة فقيرة, ولكنها واثقة أنها ستصل لمبتغاها وتصبح من أقوى دول العالم...وأتمنى أن تصبح مصر مثل الهند..فمصر لا تفتقد لشيئ سوى التخطيط والميكنة لثرواتها البشرية والاقتصادية.
نتطرق للموضوع الأصلي وهو البلازما والليزر ,فسأعرف كلاهما في الايطار العلمي اللذان قد سميا به.
البلازما:
وتسمى الحالية الرابعة للمادة حيث تنقسم المواد لأربع حالات :الصلبة -السائلة - الغازية-البلازما.
والبلازما هي الحالة الوحيدة التي يحدث فيها تغيير للتركيب الذري للمادة,فتفقد الذرة بعض الكتروناتها في عملية تسمى بعملية التأين ,وتتحول المادة فيها الى غاز,وتحدث ظاهرة البلازما عند درجات حرارة عالية جدا في التفاعلات النووية في الفضاء الخارجي على النجوم,وعلى سطح الشمس في أعماقها تحت درجات حرارة وضغط عاليتين من 5000 -6000 درجة سليسيوس.مع امكانية تعديل الظروف الحرارية تلك في الطبيعة عن طريق قوانين الديناميكا الحرارية والقانون العام للغازات.
فتتحول المادة لمزيج من الالكترونات السالبة والموجبة.. وحيث أن حالة اللازما غير مستقرة ; فان الشحنات تلك تعيد ترابطها ببعضها البعض بسبب وجود القوى التجاذبية الكهربية, ويكون نتيجة هاذا الاندماج أو الاتحاد
انطلاق ضوء ذو تردد معين يعتمد على مستويات الطاقة للذرات المكونة للمادة.

أين توجد البلازما؟

غالبا معظم المواد الموجودة فى هذا الكون الفسيح توجد على شكل بلازما. هذه البلازما تكون عند درجات حرارة عالية وكثافة عالية ايضا، وتتغير هذه الظروف من مكان إلى آخر، فعلى سبيل المثال تبلغ درجة حرارة مركز الشمس عشرة ملايين درجة مئوية بينما على سطحها فإن درجة الحرارة تصل إلى ستة الاف درجة مئوية، ومن هنا فإن البلازما داخل الشمس تختلف تماما عن خارجها. ولكن على الكرة الأرضية حيث توجد المادة غالبا فى الحالة الصلبة، وطبقات الغلاف الجوى عبارة عن غاز غير متأين، أى أنه لا يوجد حالة بلازما طبيعية على سطح الأرض. ولكن هل يمكن عمل بلازما فى المختبر؟ إذا كنت تقرأ هذا المقال تحت ضوء مصباح فلورسنت (النيون) فإن مصدر هذا الضوء هو عبارة عن بلازما مصنعة، فعند مرور التيار الكهربى داخل غاز (غاز الزئبق) تحت ضغط منخفض فإنه يعمل على تأين الغاز مخلفا خليطا من الأيونات الموجبة والالكترونات، ما تلبث ان تتحد مع بعضها البعض وتكون النتيجة انبعاث الضوء الساطع، وتستمر هاتان العمليتان (التأين والاتحاد) طالما استمر التيار الكهربى فى السريان. هذا مثال على مصدر بلازما ذات درجة حرارة منخفضة موجود فى بيتك.

لكن قديما وحتى يومنا هذا اهتم علماء الفيزياء الفلكية بكشف اسرار الكون وفهم ماذا يحدث على سطح الشمس والنجوم الاخرى. لذلك حاول العلماء تصنيع نفس البلازما الموجودة فى النجوم داخل المختبر، ولصنع هذه البلازما طور العلماء اجهزة مختلفة قادرة على توليد طاقة هائلة لانتاج بلازما بنفس ظروف البلازما الموجودة فى الطبيعة، كان احد هذه الاجهزة هو جهاز التحديد المغناطيسى Magnitec-confinment devices. وتمت معرفة معلومات كثيرة عن تركيب وفهم السطح الخارجى للغلاف الشمسى. ولكن ماذا عن البلازما الموجودة داخل الشمس ذات درجات الحرارة العالية جدا. كيف يمكن تصنيعها فى المختبر؟

فى الحقيقة وحتى عهد قريب وبتطور اجهرة الليزر اصبح بالامكان الحصول على بلازما مشابهة لتلك الموجودة على اى نجم سواء داخله أو خارجه.

الحصول على بلازما بواسطة اشعة الليزر؟

نعلم أن الضوء هو عبارة عن تذبذب مجالين متعامدين احدهما كهربى والاخر مغناطيسى. والليزر ما هو الا عبارة عن ضوء له خصائص مميزة تجعل شدة اشعاعه (الطاقة لكل وحدة مساحات لكل وحدة زمن) تزداد بزيادة المجال الكهربى والمغناطيسى لموجاته.

ولكن هل يمكن أن يكون الضوء الناتج من اشعة الليزر أقوى من الأجسام الصلبة؟ إن شدة المجال الكهربى لشعاع الليزر تبلغ 5x1011v/m عندما تكون شدة اشعاعه 3x1020W/m2، وفى أيامنا هذه تصل شدة اشعاع بعض انواع الليزر إلى مايقارب 1022W/m2. وبالمقارنة بشدة اشعاع مصباح كهربى عادى (60Watt) على بعد متر او مترين فهى لا تزيد عن 0.1W/m2. حيث أن المجال الكهربى لهذه الاشعة يفوق بكثير المجال الكهربى الذى يربط ذرات المواد الصلبة بعضها ببعض وبذلك فإن المجال الكهربى لشعاع الليزر سوف يؤثر على الكترونات المواد الصلبة ويفصلها عن الذرات تاركا أيونات موجبةـ وبهذا يحول الليزر جزء من المادة الصلبة إلى حالة بلازما. يتضح مما سبق أنه يمكن استخدام اشعة الليزر المركزة لانتاج بلازما عند درجات حرارة عالية جدا داخل المختبر وبتكلفة قليلة. يوضح شكل (1) كيفية تصنيع بلازما فى المختبر باستخدام الليزر.

ولهذا النظام العديد من التطبيقات الهامة فى مجال الفيزياء الفلكية حيث يتم اختيار نوع مادة الهدف وتصميمه بشكل هندسى معين حتى تكون البلازما الناتجة فى المختبر مشابهة لظروف البلازما الحقيقية للنجم المراد دراسته. بالاضافة إلى إلى ذلك فإن البلازما تستخدم فى العديد من الصناعات.

التطبيقات الصناعية للبلازما

صناعة الدوائر الالكترونية المتكاملة

تستخدم البلازما ذات درجات الحرارة المنخفضة فى العديد من المجالات الهامة على سبيل المثال، معظم الدوائر المتكاملة المعقدة جدا والتى تدخل فى تركيب كل جهاز الكترونى، هذه الدوائر الالكترونية تحتوى على عشرات الالاف من الترانزستورات والمكثفات موصلة ببعضها البعض بواسطة اسلاك قطرها فى حدود 0.1 ميكرومتر، هذا النوع من التكنولوجيا الدقيقة والمعقدة تصنع باستخدام البلارما، حيث تقوم البلازما بنحت الدوائر الالكترونية على شريحة السيليكون بناءا على القناع المعدنى الموضوع امام الشريحة.

فى هذه العملية يكون النحت على شريحة السليكون كالاتى:-

حيث أن الالكترونات داخل البلازما حرة الحركة وطاقتها اعلى من الايونات الموجبة فإنها تصل إلى اطراف البلازما بسرعة وتقوم بدورها بجذب الايونات الموجبة اتجاهها وتعجلها باتجاه الشريحة وعند اصطدام الايونات الموجبة بالمناطق المكشوفة على الشريحة تقوم بنحتها، وبعدها يستبدل القناع المعدنى باخر مطبوع عليه الدوائر الكهربية الخاصة بالطبقة الثانية وهكذا بالنسبة للطبقة الثالثة والرابعة ...... والخ حتى تتم عملية النحت.

هنالك طريقة اخرى متبعة وهى تعتمد على استخدام مركب Carbon tetrafluoride CF4 كمصدر لانتاج البلازما، وعندها يتحول هذا المركب إلى اجزاء اخرى منها ذرات الفلورين. هذه الذرات تتفاعل مع ذرات السيليكون المكونة للشريحة وتكون مركب جديد هو Silicon tetrafluoride والذى يمكن ازالته اثناء عملية الضخ. يتضح مما سبق أن هذه الطريقة هى عملية كيميائية تقوم فيها ذرات الفلورين بالتهام السليكون المراد ازالته. وهذه العملية اسرع من عملية النحت المذكورة سابقا.

وتجدر الاشارة إلى أن البحث والتطوير جارى منذ عام 1980 وحتى الأن للحصول على بلازما منتظمة لتغطى اكبر مساحة ممكنة حيث كانت شريحة السيليكون المستخدمة قديما تبلغ 2سم2 اما الأن فهى تصل إلى 20سم2، وهذه البلازما لها استخدامات عديدة فهى تستخدم فى شاشات اجهزة الكمبيوتر المتنقلة Notebook computer كمصدر ضوئى، والتى ادت إلى تطور كبير فى مجال تكنولوجيا شاشات العرض. ويسعى العلماء حاليا للحصول على شاشة مساحتها 1متر مربع وسمكها لايزيد عن 4-5 سم لاستخدامها كشاشة تلفزيون يمكن تعليقها فى المنازل والمحلات دون ان تشغل حيز من الغرفة، وهذا سوف يتحقق بالوصول إلى بلازما متجانسة على مساحة 1متر مربع.

حافظة على نظافة البيئة

تستخدم البلازما حاليا فى العديد من الدول المتقدمة فى التخلص من المواد السامة الملوثة للبيئة معتمدين على العمليات الكيميائية الفريدة التى تتم داخل البلازما. حيث يمكن ان تقوم البلازما بتحويل المواد السامة المنبعثة من مداخن المصانع ومن عوادم السيارات مثل غاز اكسيد الكبريت (SO) واكسيد النيتريك (NO) إلى مواد غير سامة. فعلى سبيل المثال غاز NO قبل ان يخرج من المدخنة إلى الغلاف الجوى، توجه عليه حزمة من الالكترونات ذات طاقة عالية من جهاز مثبت فى منتصف المدخنة تعمل على تأيين الغازات الموجودة (المادة السامة NO والهواء) أى تحولها إلى حالة بلازما. وقبل خروجها إلى الجو تكون مرحلة التأيين قد انتهت وتتكون جزيئات النيتروجين والاكسجين نتيجة لعملية اعادة الاتحاد. وبهذا نكون قد حولنا الغازات الملوثة إلى غازات نافعة وبتكاليف قليلة.

يجدر الاشارة هنا أنه تم حديثا التوجه إلى معالجة الغازات المنطلقة من عوادم السيارات، حيث تم تركيب جهاز بلازما فى عادم السيارة ليعالج الغازات السامة قبل خروجها إلى الجو.

كذلك اجريت تجارب عديدة على الفضلات الصلبة والسائلة حيث تستخدم بلازما عند درجات حرارة عالية تصل إلى 6000 درجة مئوية تعمل على تبخير وتحطيم المواد السامة وتحولها إلى غازات غير سامة، وفى نهاية العملية يكون ماتبقى من مواد صلبة فى صورة زجاج. وتم فى امريكا العام الماضى التخلص من حوالى 4000 مستودع يحتوى على فضلات صلبة وملوثة للبيئة بواسطة البلازما. وقد كانت هذه الفضلات تدفن فى باطن الارض مما كانت تسبب اخطار تلوث. وباستخدام البلازما يمكن حاليا التخلص من 200 كيلو جرام من المواد السامة فى الساعة.

كيف تصنع بلازما فى المختبر

لكى نصنع بلازما تحت ضغط منخفض لغاز ما، فإن كل ما يلزم هو مفرغة هواء بارتفاع متر وعرض نصف متر تقريبا، وكذلك مصدر تغذية للتيار المتردد، (فى الصناعة يكون مصدر التيار فى مجال ترددات الراديو 13.56MHz وحديثا يمكن استخدام اجهزة الميكرويف ذات ترددات اعلى 2.45GHz). فى الواقع يمكن عمل بلازما باى شكل ولكن الاكثر استخداما فى الصناعة هو الموضح فى شكل (2)، ويحتوى على قرصين معدنيين نصف قطرهما حوالى 15 سم والمسافة الفاصلة بينهما من 4-5سم. بعد ضخ الهواء بواسطة المفرغة يدخل الغاز المراد تحويلة إلى حالة بلازما وقد يكون خليط من الغازات، وبمجرد مرور التيار الكهربى (~200Watt) يبدأ الغاز فى التوهج مصدرا ضوءا ساطعا لونه يعتمد على نوع الغاز.

أما بالنسبة لتطبيقات البلازما فهي تكمن في الآتي:

العديد من الصناعات التكنولوجية المعقدة جدا والتي تعتمد على استخدام البلازما المصنعة فى المختبر، من هذه الصناعات صناعة الدوائر الالكترونية المتكاملة وتصنيع الماس وعمل رقائق واسلاك من المواد فائقة التوصيل للكهرباء وكذلك فى تحويل الغازات السامة إلى غازات نافعة هذا فضلا عن دراسة وفهم اسرار الكون الفسيح. فى هذا المقال سوف نلقى الضوء على البلازما واستخداماتها.

وهناك أيضا شاشات البلازما:

مبدأ عمل شاشات البلازما يعود إلى العام 1964 في جامعة الينويز الأمريكية، ولم تكن الفكرة اكبر من شاشة مكونة من نقطة ضوء تم منذ ذلك اوقت وحتى نهاية الستينات العمل على تطوير شاشة متكاملة من نقط الضوء هذه وهذه الشاشة كانت صغيرة وتعطي صور غير واضحة وكانت فكرة الحصول على شاشة مسطحة وكبيرة وجودة عالية في ذلك الوقت كمشهد من الخيال العلمي، ولكن مع تطور العالم الرقمي تم الوصول إلى شاشات عالية الجودة وتغطي مساحة كبيرة حديثا سمعنا على شاشات تلفزيونية من نوع اخر تسمى شاشات البلازما plasma flat panel display هذه الشاشات يمكن ان تصل الى 60 انش أو أكثر وسمكها لا يزيد عن 15 سنتيمتر ويمكن تعليقها على الجدار كالصورة هذا بالاضافة إلى العديد من المزايا والخصائص التي تعطي رفاهية ومتعة مشاهدة أكثر من التلفزيونات التقليدية.

وللتعرف اكثر على فكرة عمل هذه الشاشات التي بدأت تنتشر بكثرة يجب اولاً أن نلقى بعض الضوء على فكرة عمل الشاشات التقليدية. فمنذ أكثر من 70 عاماً اعتمدت اجهزة التلفزيون على شاشات الكاثود Cathod ray tube. حيث تتكون شاشات الكاثود من مدفع الكتروني في انبوبة مفرغة وتنطلق الالكترونات المعجلة باتجاه شاشة فسفورية، وباستخدام مجالين كهربيين متعامدين يمكن مسح الشعاع الالكتروني على الشاشة بمعدل يصل الى 25 مرة في الثانية، تعمل الالكترونات عند سقوطها على ذرات الفسفور المونة للشاشة على اثارتها مما تجعلها تعطي ضوء لتتخلص من اثارتها. هذا الضوء المنبعث من تلك العناصر الضوئية (ذرات الفسفور) تكون الصورة التي نشاهدها. هذه الصورة التي نحصل عليها من شاشات الكاثود صورة واضحة ومقبولة ولكن حجم الشاشة الكبير مما يعني عمق كبير لجهاز التلفزيون ويصبح الجهاز ثقيل ويشغل حيز كبير من الغرفة الموجود بها.

ماهي البلازما؟

نعلم ان شاشات الكاثود في التلفزيون الملون تعمل من خلال تقسيم الشاشة إلى مربعات صغيزة تسمى البكسل pixelوهو عنصر الصورة ويكون هناك ثلاثة بيكسلات لكل من الالوان الاساسية وهي الأحمر والأخضر والأزرق وتكون موزعة على مساحة الشاشة وعند اصطدام الالكترونات بأي من هذه البكسلات يعطي ضوء بلون البكسل وهذا يكون الصورة

تعمل شاشات البلازما بنفس الآلية حيث يوجد يتكون كل بكسل من ثلاث ألوان (الأحمر والأخضر والأزرق) ولكن لا يوجد الشعاع الالكتروني ولا يوجد الشاشة الفوسفورية انما يتم توليد هذه الالوان الثلاثة في كل بكسل من خلال fluorescent lights ضوء فلورسنت ومن خلال التحكم ودرجة شدة كل ضوء فلورسنت ينتج اللون المطلوب وهذا يحدث على كل بكسلات الشاشة وعندها تتكون الصورة الكاملة.

يتم توليد ضوء الفلورسنت من خلال البلازما، والبلازما هي غاز متأين حيث تكون ذرات الغاز منزوعة منها الكتروناتها ويصبح الغاز مكون من ايونات موجبة الشحنة والكترونات سالبة الشحنة. وبالطبع هذا الغاز (البلازما) يحدث في ظروف خاصة مثل أن يكون الغاز داخل مجال كهربي كبير ناتج عن فرق جهد عالي مما يؤدي إلى انجذاب الالكترونات إلى الطرف الموجب والأيونات إلى الطرف السالب فتصطدم الالكترونات مع الايونات مما يؤدي الى أثارة ذرات الغاز في البلازما وينتج عن هذه الاثارة تحرر طاقة في صورة فوتونات ضوئية كما هو الحال في المصابيح الفلوريسنت التي نستخدمها للاضاءة.

يتم في شاشات البلازما استخدام غاز مكون من ذرات النيون وذرات الزينون وعند اثارة هذا الغاز بالطريقة سابقة الذكر نحصل على فوتونات في مدى الترددات الفوق بنفسجية التي لا ترى بالعين المجردة ولكن هذه الفوتونات تستخدم للاثارة للحصول على فوتونات بترددات في المدى المرئي.

نظرة أعمق في فكرة عمل شاشات البلازما

تتوزع ذرات النيون وذرات الزينون على ألاف الخلايا المحصورة بين لوحين من الزجاج المنطقة رقم (2) و (6) الموضحة في الشكل. يتصل باللوح الزجاجي الأمامي (2) الكترود يسمى الكترود العرض Display Electrode ويتصل باللوح الزجاجي الخلفي (6) الكترود العنونة Address Electrode. وبالتالي تصبح كل خلية ضوئية (تحتوي على ذرات النيون والوينون) محاطة بالكترود العرض من الامام والكترود العنونة من الخلف.

تحيط مادة عازلة غير موصلة للكهرباءdielectric material الكترود العرض ومغطاة بطبقة واقية من اكسيد الماغنيسيوم لتكون بين الخلية الضوئية ولوح الزجاج الأمامي.

كما هو موضح في الشكل المقابل اللون الأصفر للالكترود الأمامي والخلفي والخلايا ضوئية الموضحة باللون الأزرق ويوجد بجانبها خلية ضوئية خضراء وأخرى حمراء، كذلك موضح الطبقة الواقية الشفافة من MgO.

بنظرة شمولية اكثر نلاحظ في الشكل التالي كيف تترتب الخلايا الضوئية على مساحة الشاشة وتقسم الشاشة الى وحدات صغيرة تسمى عناصر الصورة وتدعى بكسل وكل بكسل عبارة عن ثلاثة خلايا ضوئية للألوان الأحمر والأخضر والأزرق. ونلاحظ أيضا اشرطة الالكترود (اللون الاصفر) بحيث تكون مرتبة في صفوف متوازية ويكون الكترود العنونة ممدد على طول الخلايا الضوئية ذات اللون الواحد ويكون الكترود العرض ممددا على طول البكسل.وهذا يكون على طول وعرض الشاشة مما يشكل في النهاية شبكة من الالكترود

وعملية تأين الغاز في داخل اية خلية ضوئية يتحكم فيه كمبيوتر خاص للشاشة حيث يتحكم في توجيه الشحنة الكهربية الى الالكترودين المتعامدين فيحدث التفريغ الكهربي في تلك الخلية وتتكرر هذه العملية الاف المرات في جزء من الثانية.

عندما يشحن الالكترودين المتعامدين (المتقاطعين) يصبح هناك فرق جهد بينهما فيمر تيار كهربي في تلك الخلية الضوئية التي تحتوي غاز النيون والزينون فيتأين الغاز ويتحول إلى بلازما وتنطلق اشعة كهرومغناطيسية (فوتونات) فوق بنفسجية.

تعمل الاشعة الفوق بنفسجية المنطلقة من البلازما على اثارة المادة الفسفورية المغلفة للخلية الضوئية حيث تمتص الكترونات ذرات الفسفور فوتون الاشعة فوق البنفسجية وينتقل الالكترون الى مستويات طاقة أعلى وعند عودة الالكترون المثار الى مستوى طاقته الأصلي يعطي ضوء في المدى المرئي.

كما ذكرنا سابقا فإن كل بكسل مكون من ثلاث خلايا ضوئية وكل خلية ضوئية مغلفة من الداخل بمادة فسفورية تعطي ضوء أحمر والثانية تعطي ضوء أخضر والثالثة تعطي الضوء الأزرق (أي أن هناك ثلاث انواع مختلفة من الفسفور لكل خلية ليعطي الألوان الأساسة).

وبالتحكم بشدة تيار النبضات الكهربية الموجهة بواسطة الكمبيوتر إلى الخلايا الضوئية المختلفة يمكن الحصول على خليط من الألوان الاساسية لتعطي في المحصلة كل الالوان الممكنة. وحيث أن التحكم يصل إلى كل بكسل فإن الصورة الناتجة من الشاشة ذات دقة عالية مهما كانت الزاوية التي ننظر إليها إلى الشاشة.

ميزات شاشات البلازما

وزن الشاشة خفيف ومسطحة تماماً وسمكها لا يزيد عن 15 سنتيمتر مما يجعل تعليقها على الجدران ممكن.

مدى رؤية كبير يصل إلى 160 درجة وصورة واضحة والوان زاهية ودقة عالية.

لا تتأثر بالمجالات المغناطيسية حولها وبالتالي يمكن تثبيت نظام سمعي عالي الجودة دون القلق على التأثير المغناطيسي للسماعات على الشاشة.

عيوب شاشات البلازما

هذه الشاشات تصنيعها معقد وتكنولوجيا متقدمة وباهظة الثمن حيث سعرها يتراوح من 4000 دولار الى 15 ألف دولار ولكن تدريجيا سيهبط السعر مع انتشارها واستبدالها بالشاشات التقليدية.

تم الرجوع في هذا الموضوع الى:

د. حازم فلاح سكيك

قسم الفيزياء - جامعة الأزهر

/hazemsakeek.com


هناك تعليق واحد:

MoHaMeD يقول...

ياريت يا داليا لو يكون موجود فيديو للموضوع اللى مكتوب عشان يوضح اكتر وانا عايز بقى اشوف موضوع عن الموجات waves